Effects of Vacuum Cooling on Quality of “Tsukudani” during Storage

Tetsuya SHINDO, Rieko HIROSE, Akane MIYAMURA and Kunio NUMATA

The present study was carried out to find out the effects of vacuum cooling on quality and shelf-life of “asari-” and “konago-tsukudani” and to compare them with those by natural or fan cooling methods. These “tsukudani” which was vacuum cooled in a box, was processed in shorter-time and more hygienically, but resulted in greater moisture loss. The composition and sensory evaluation of the products by the vacuum cooling showed no significant difference from those of the other cooling methods. The storage tests indicated that the vacuum cooling with less microorganisms helped to extend the preservation period of “asari-” and “konago-tsukudani” under different temperatures experimented. Based on the results vacuum cooling under the practical scale was experimented. After the cooling, the “tsukudani” was processed entirely in clean room. Quality of the products was evaluated fine, and the effect was even more conspicuous in the case of foods of higher water activity.

実験名

1. 試料の調製

試料の調製はあさりと小女子の2種類について行った。

(1) 原料と煮込み

あさりは中国産の冷凍あさりを用い、11.2kgを解凍後、表1に示した組成の調味液で30分間煮込んだ。

小女子は青森県産の乾燥品を用い、4kgを水戻し後、表2（A液）に示した組成の調味液で15分間煮込み、てり出しのため水飴とソルビトールの混合液（B液）を加えて、さらに10分間煮込んだ。

2. 冷 却

試料は煮込み後3等分、次の場合（1）自然冷却、（2）扇風機を用いた通風冷却、（3）真空冷却で冷却した。なお、真空冷却機は林田商事株式会社製（KV−1）を使用した。
表1 あさり佃煮の調味液組成

湯口醤油	1.9
淡口醤油	2.4
砂糖	2.9
みりん	0.1
ソルビトール	2.7
水	4.0

表2 小女子佃煮の調味液組成

A液	湯口醤油	7.0
砂糖	5.7	
みりん	0.18	
寒天粉末	8 g	
B液	ソルビトール	2.4
水	飴	1.3

2. 冷却時間及び冷却中の水分蒸発率の測定
佃煮を煮込み後、冷却容器に厚さが約5cmになるように広げて、品温が30℃になるまでの経時変化を測定した。
冷却中の水分蒸発率は各冷却法とも冷却前と冷却後の重量差を冷却前の製品重量で除したものとした。

3. 冷却中の菌の付着数の測定
各冷却法も冷却開始時から冷却終了時まで冷却容器の近辺にＰＤＡ培地の入ったシャーレ（90㎜Φ）を各2枚ずつ置き、真菌数を測定した。

4. 製品の成分分析
製品は水分、塩分、還元糖、全糖の分析及び水分活性の測定を行った。
水分は70℃減圧乾燥法、塩分はモール法、還元糖はソモギ変法、全糖は酸分解後、還元糖と同様にソモギ変法によって求めた。
水分活性はロトロニック社製水分活性測定器を用いて測定した。

5. 官能検査
冷却法間での比較を行うために、あさりについては外観、食感の2項目についてセンター職員5名で行い、小女子については外観、硬さ、風味、総合の4項目について同様に職員12名で3段階評価を用いて行った。

6. 保存試験
試料は冷却終了後直ちに減菌シャーケに入れ密閉した後、あさりについては室温（25〜28℃）、15℃、10℃、小女子については30℃、20℃、10℃で保存し、それぞれカビの発生の有無を調べ、生菌数を常法により測定した。

7. 実用規模での試験
工場の概略は図1に示した。
試料はあさりを用い、製造室において煮込み時間を変えて2種類調製し、通風冷却処理と真空冷却処理を行った後、充填室で小袋包装した。冷却室はクリーンルームを採用していた。なお、通風冷却は製造室で行った。
製品は成分の分析と官能検査を行った。
工場内の落菌数及び浮遊菌数は前報1同様に測定した。
製品は30℃で保存し、約50日間にわたりカビの発生の有無、包装袋の膨れを調べた。また、生菌数、真菌数は常法により測定した。

図1 佃煮工場概略
実験結果

1. 冷却時間及び水分の蒸発率
冷却時間は表3に示した。真空冷却処理の冷却時間はあさり10分と短く、通風冷却処理と比べてもあさり15分、小女子22分であった。水分の蒸発率は表3に示したように、自然放冷で通風冷却、真空冷却の順にやや増加した。

2. 冷却中の菌の付着数
落下菌数は各シャーレ2枚の平均値を表3に示した。
菌数は冷却時間が長い自然放冷、通風冷却処理で多かったが、真空冷却処理ではあさり、小女子とも僅かであった。

表3 冷却方法の違いによる冷却時間、水分蒸発率及び冷却中の菌の付着数

<table>
<thead>
<tr>
<th>冷却方法</th>
<th>あさり</th>
<th>小女子</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷却時間</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% (W/W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cfu/90mmシャーレ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然放冷</td>
<td>2 0</td>
<td>1 6 0</td>
</tr>
<tr>
<td>通風冷却</td>
<td>5 0</td>
<td>2 5 0</td>
</tr>
<tr>
<td>真空冷却</td>
<td>1 0</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

1) 煮込み終了時から急冷が30℃になるまでの時間
2) 水分蒸発率=(冷却後の製品重量-冷却前製品重量)÷冷却前の製品重量
3) 冷却開始時から冷却完了時の菌の付着数

3. 製品の成分分析
製品の成分は表4に示した。

我が国保存性は水分活性値と密接な関係があり、水分が少なく、塩分・糖分が多いと水分活性値は低く、目安がよくなることが知られている。小女子10%、あさり15%、他の10%、小女子15%、あさり10%、より保存性がよく知られるが、冷却法間での成分及び水分活性値はあさり、小女子ともほとんど差異はみられなかった。

4. 官能検査
あさり10%、小女子10%、冷却法間での差は認められなかった。これに基づき、あさりの官能検査結果については省略した。

小女子10%の官能検査結果については表5に示した。外観において真空冷却法が他の冷却法に比べてややややよく好まれる傾向があったが、それ以外の項目は各冷却法間での差はほとんど認められなかった。なお、1元配置法による分散分析を行った結果、外観においても有意差（P=0.05）は認められなかった。

表4 冷却方法の違いによる製品の成分及び水分活性

<table>
<thead>
<tr>
<th>供試品</th>
<th>冷却方法</th>
<th>水分 (%)</th>
<th>塩分 (%)</th>
<th>還元糖 (%)</th>
<th>全糖 (%)</th>
<th>水分活性</th>
</tr>
</thead>
<tbody>
<tr>
<td>あさり</td>
<td>自然放冷</td>
<td>4.5</td>
<td>3.5</td>
<td>1.1</td>
<td>1.3</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>4.7</td>
<td>3.6</td>
<td>1.1</td>
<td>1.2</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>4.6</td>
<td>3.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.90</td>
</tr>
<tr>
<td>小女子</td>
<td>自然放冷</td>
<td>2.3</td>
<td>4.8</td>
<td>3.1</td>
<td>2.1</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>2.3</td>
<td>5.0</td>
<td>3.4</td>
<td>2.1</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>2.3</td>
<td>4.9</td>
<td>3.2</td>
<td>2.0</td>
<td>0.78</td>
</tr>
</tbody>
</table>
表5 小女子佃煮の官能検査結果

比較項目	自然放冷		通風冷却		真空冷却				
	悪い	普通	良い	悪い	普通	良い	悪い	普通	良い
外観	2	8	3	4	5	3	0	6	6
硬さ	1	4	6	2	6	3	1	7	3
風味	0	7	5	0	9	3	3	6	3
総合	0	7	5	1	8	3	2	7	3

1) 被験者：センター職員12名
2) 1名無効のため11名とした

5. 保存試験

カビの発生の有無については、あさり佃煮は表6に、小女子佃煮は表7に示した。
あさりについては各保存温度区とも自然放冷と通風冷却処理間に差がみられず、室温では4〜5日、15℃保存では10〜14日後、10℃保存では17日後にそれぞれカビが発生した。しかし、真空冷却処理ではいずれの保存温度区でもカビの発生はみられなかった。
小女子については30℃保存では自然放冷で14日、通風冷却処理で18日、真空冷却処理で22日後にカビが発生し、20℃保存では自然放冷で34日、通風冷却処理で60日、真空冷却処理で70日後にそれぞれカビが発生した。10℃ではいずれの冷却処理においても70日間カビの発生は認められなかった。
一般的に生菌数のうち、カビを除く細菌と酵母の和が10⁷/gに達した時点で腐敗とみなしている3）。生菌数については図には示さなかったが、あさり及び小女子佃煮の各冷却法のうち、あさり佃煮の真空冷却処理を除く製品において、いずれも細菌と酵母の和が10⁷/gに達する以前に前述のとおり、カビが発生した。あさり佃煮の真空冷却処理を行った製品は約3週間保存後に細菌と酵母の和が10⁷/gに達した。
以上のことから、あさり、小女子ともにいずれの保存温度区においても冷却中の菌の付着数の少ない真空冷却処理では他の冷却処理と比べて日持ちの延長を図ることができた。また、保存温度を下げることが製品の日持ち延長には大変有効であることが確認された。

表6 あさり佃煮におけるカビの発生状況

<table>
<thead>
<tr>
<th>保存温度</th>
<th>冷却方法</th>
<th>保 存 日 数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>室温 (25〜28℃)</td>
<td>自然放冷</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>−</td>
</tr>
<tr>
<td>15℃</td>
<td>自然放冷</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>−</td>
</tr>
<tr>
<td>10℃</td>
<td>自然放冷</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>−</td>
</tr>
</tbody>
</table>

−：正常、+：カビ発生、++：カビ増殖、+++：カビ著しく増殖
表7 小多様培養におけるカビの発生状況

<table>
<thead>
<tr>
<th>保存温度</th>
<th>冷却方法</th>
<th>保</th>
<th>存</th>
<th>日</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>30℃</td>
<td>自然冷却</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20℃</td>
<td>自然冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10℃</td>
<td>自然冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>通風冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- : 正常，+ : カビ発生，++ : カビ増殖，+++ : カビ著しく増殖

6. 実用規模での試験
実験室規模での試験結果から真空冷却の有効性が認められたので、実用規模での試験を実施した。冷却時間は通風冷却処理では15分程度かかったのに比べて、真空冷却処理では10分であり、冷却時間の短縮が図られた。
成分は表8に示したように、冷却法間ではほとんど差異がみられなかった。水分活性値は通常の煮込みを行った製品が0.75、浅煮の製品は0.83であった。
冷却法間での官能検査による比較を行った結果、顕著な差は認められなかった。

空中落下菌数及び浮遊菌数については表9に示した。製造室では真菌数で150cfu/m³-airと比較的清浄な環境であり、クリーンルームを採用した冷却室。充填室ではいずれも0～4 cfu/m³-airと僅かであった。
保存中の製品は30℃、50日間カビの発生は認められなかった。通常の煮込みを行った製品は通風冷却処理、真空冷却処理ともに日持ちは良好であった。しかし、浅煮の製品においては酵母の増殖による製品の変敗がみられた。図2に示したように、真空冷却処理では約40日後でも酵母数は10³cfu/gであったが、通風冷却処理では約30日後に10⁴cfu/gとなり、包装袋が膨張した。
以上のことから、これらの製品では真空冷却処理を行うことで品質を損ねずに、冷却時間を短縮することができた。また、菌の付着を最小限に抑えられたことで、水分活性値が高く保存性の悪い製品の日持ち延長に特に有効であった。

表8 個々工場において製造した製品の成分、水分活性及びpH

<table>
<thead>
<tr>
<th>個々種別</th>
<th>冷却方法</th>
<th>水分 (%)</th>
<th>可溶性糖 (%)</th>
<th>塩分 (%)</th>
<th>水分活性</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>あさり</td>
<td>通風冷却</td>
<td>28.9</td>
<td>20.4</td>
<td>8.3</td>
<td>0.75</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>28.2</td>
<td>22.6</td>
<td>8.3</td>
<td>0.74</td>
<td>5.5</td>
</tr>
<tr>
<td>浅煮あさり</td>
<td>通風冷却</td>
<td>41.3</td>
<td>15.6</td>
<td>8.4</td>
<td>0.83</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>真空冷却</td>
<td>39.6</td>
<td>14.8</td>
<td>8.3</td>
<td>0.82</td>
<td>5.7</td>
</tr>
</tbody>
</table>
表9 佃煮工場における空中落下菌数及び浮遊菌数

<table>
<thead>
<tr>
<th>測定場所</th>
<th>落下菌数</th>
<th>浮遊菌数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cfu/90mmφショベル)</td>
<td>(cfu/m³air)</td>
</tr>
<tr>
<td>生菌数</td>
<td>真菌数</td>
<td>生菌数</td>
</tr>
<tr>
<td>製造室</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>冷却室</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>空壕室</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1) シャーレの開放時間：生菌数は5分，真菌数は20分
2) 菌数は平均値として示した：製造室，空壕室はn=5，冷却室はn=3
3) 菌数は平均値として示した：n=2

図2 佃煮工場において製造した製品の保存中の酵母数の変化

考察

真空冷却処理は従来の速冷凍法による冷却処理とは異なり，冷却機内を真空状態にすることで製品の気化熱を奪い，短時間で冷却が行える。また，冷却機内を常圧状態に戻す時に外気は無菌フィルターを通じて流入するため無菌状態に近い冷却が可能である。

従来法である通風冷却処理でも製品を薄く広げて冷却を行えば，表面積が大きくなるため短時間で冷却が行えるが，大量処理では効率が悪く，それと比して真空冷却処理ではスペースをとらず短時間に大量に処理が行えるので，実用的有効と考えられた。

真空冷却処理では，冷却時間が長くなると水分の蒸発量が多くなり，製品が若干硬めになる傾向がみられたため，冷却終了時の品温は30℃程度に抑えるのがよいと思われた。

保存性においては，水分活性値が0.91で細菌，0.88で酵母，0.80でカビの増殖が抑えられる。そのため水分活性値を0.80以下に調製すれば，微生物の増殖がほぼ抑制され，真空冷却処理を行ってもマリエは延長できる。しかし，今回試験に供試した水分活性値の高いもぎたん佃煮のような製品は，真空冷却法が特に有効な方法であると考えられた。保存中に製品を変敗させる微生物の種類は製品の水分活性，包装，二次污染の有無等により様々に変化する。今回調査を行った工場のように冷却後の各工程にクリーンルームを用いて，二次汚染防止のための措置を行うことは製品の初
発菌数を抑える点で有効であると思われた。また、真空冷却中の冷却機内での汚染を抑えるため、冷却機内壁面や冷却容器等も使用後にアルコール殺菌等を行い、常に清潔に保つことが重要である。

今回あきら、小枝子亀煮で真空冷却処理を試み、良好な結果を得たが、減圧下で冷却を行うため、扱う製品によっては型ずれ等により品質に好ましくない影響を与えることも考えられるので、実際の利用にあたっては、事前の試験試験が必要である。

要約

（1）あきら及び小枝子亀煮の製造工程のうち冷却処理において、迅速かつ清浄環境で冷却を行う真空冷却法を用い、製品の品質及び保存性に与える影響について従来法（自然放冷及び扇風機を用いた通風冷却）と比較検討した。
（2）真空冷却処理では、従来法と比較して冷却時間は短縮されたが、水分蒸発量はやや多かった。
（3）真空冷却処理をした製品は、他の冷却処理を行った製品と比較して、成分及び栄養価については差がなく良好であった。
（4）真空冷却中は菌の付着がほとんど認められなかったため、あきら及び小枝子亀煮をもとにいずれの保存温度区においても製品の日持ち延長を図ることができた。
（5）真空冷却処理の実用規模での効果を調べるため、亀煮工場において試験を行ったところ、工場内は冷却工程以外の製造工程でクリーンルームを用いたことで清浄な環境であり、特に水分活性値の高い製品の保存性向上に有効であった。

最後に本研究を行うに当たって御協力を頂いた、東京都亀煮懸案工業協同組合及び御日本橋鮮魚に感謝いたします。

文献

1）露木英男：New Food Industry，29，14－18（1987）。
2）華瀬理恵子・新藤哲也・宮森清勝・沼田邦雄：東京都立食品技術センター研究報告，2，21（1993）。
3）後藤康夫：食品衛生研究，27，239－245（1977）。
4）食品工場の空中菌対策実例資料集，フジ・テクノシステム（1978）。
5）相崎和嘉：食品微生物学，医歯薬出版（1976）。